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Abstract

If the Hamiltonian for the motion of a charged particle in

a magnetic field has one or more cyclic coordinates it may

often be viewed as representing the motion of a particle sub-

ject to a potential V . The use of V provides qualitative

insight about the motion even in some cases where a solution

of the motion cannot be obtained. Several examples using

this concept are reviewed and discussed.
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INTRODUCTION

There exist two typesof classical particle motion which are

relatively easy to handle in Hamiltonian form. One is the motion

in a potential field, where the structure of the potential function

not only gives the form of the Hamiltonian but also provides quali-

tative information about the resulting motion, and the other is the

motion of a charged particle in a magnetic field. The purpose of

this work is to review examples in which motions of the second type

can be reduced to the first type, with various related benefits.

Perhaps the best known example of such a reduction is the work

(1)(2)
of Carl St8rmer , performed around the turn of the century

and dealing with the motion of a charged particle in a magnetic

dipole field. If i is the dipole moment generating this field,

an appropriate vector potential is

-2
A = tr sing T (1)

where (r, , ) are spherical coordinates with e measured from

the dipole axis and where f is a unit vector in the 4- -direction.

For time-independent fields,a Hamiltonian for a particle of mass m

( = mO , where m0  is the rest mass) and charge q is then(2)

H = (/2m) p2 + r 2p (r sinG ) 2(p, - qp sin28/r)2 (2)

There exist two constants of motion - the total energy E and

also the component pf of the canonical momentum, since H does

not contain explicit dependence on T . These two constants,

however, are not sufficient to provide an analytical solution for

the motion and in fact, such a solution in general cannot be found.

St8rmer's great contribution was in noticing that the constancy of

pq reduces the Hamiltonian to that of motion in a 2-dimensional

potential

H = (1/2m)(pr + r 2p )+ V(r, 0;pf ) (5)
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where

V(r, p ;P = (pp - q sin2/r)2/2m r 2 sin2 (4)

The structure of V in the (r,O ) plane - conveniently repre-

sented by contours of constant V - will determine the nature of

the motion. From its algebraic form, V is clearly non-negative ;

furthermore, if p? and q have opposite signs, V does not

vanish at any finite distance from the origin. On the other hand,

if the signs are identical, then V also vanishes along the line

r : q L sin e / P

which represents a field line of the dipole field if 'P is held

constant.

In addition, V in all cases tends to zero as r - 0o . In

the case where V vanishes on the field line (5) , that field line

must be separated from infinity by a region in which V has finite

values, and it therefore represents a localized "potential hole" .

If the particles in question have sufficiently low energy, they will

be trapped in this hole and can never reach infinity.

Thus, by qualitative arguments based on the concept of the

potential, Stirmer deduced the existence of trapped orbits in the

dipole field. He actually went further and derived the ranges in

energy and in arrival direction at various points on earth for

which any arriving particles would have to be trapped. Stirmer's

aim, by the way, was the study not of trapped orbits but of orbits

arriving from infinity. Specifically, he wanted to trace the motion

of particles responsible for the polar aurora, which he believed

to originate on the sun, and his theoryled to a result which quali -

tatively seemed to agree with observations, namely that if such

particles had relatively low energies they could arrive only near

the magnetic poles of the earth. Near the geomagnetic equator, he

showed (assuming the earth's field to be a dipole field), all low-
, are moving in

energy particles reaching the surf acer tpy-rapped orbits.
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Later investigations showed Stirmer's explanation of the aurora

to be incorrect, but his theory fits very well the observed arrival

of low-energy cosmic ray particles. Satellite observations since

1958 have also shown that trapped orbits above the earth's atmos-

phere contain a large particle population, constituting the well-

known radiation belt.

Stirmer's results are easily extended to axisymmetrical poloidal

fields, of which potential fields are a special subclass, as

are magnetic mirror configurations. Let the magnetic field be given

by Euler potentials as

B = Y(r,e) x (6)

Then H again reduces to the form (3) , with V given by

V = (p - g )2/2 m r2 sine (7)

This shows that with a proper sign of pg , a "guiding field line"

exists on which

pf= p/q

On that line V vanishes and around it particles may be trapped.

For further analysis of particle motion in a dipole field the reader

is referred to the very thorough work of Dragt(2); both there and

in the work of Strmer ) contours of V in the (r, 0 ) plene

are shown, normalized in such a way that one set of contours serves

for all energies.
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ONE - DIMENSIONAL POTENTIALS

The preceding example concerns a case where qualitative insight is

obtained about a particle's motion in a magnetic field, even though a

complete solution of the motion is not obtainable, by converting it

to motion in a potential, in two dimensions. If the problem can be

reduced to motion in a one dimensional potential, a solution is generally

possible, although its explicit derivation may be complicated. The

value of introducing a potential V in such cases is that it allows one

to come to qualitative conclusions by quick inspection - and in particular,

it allows the deduction of periodic character of the solution, which leads

one at once to look for adiabatic invariants of the motion.

As an example, consider the motion of a particle near a neutral

sheet, investigated by Sonnerup , in a magnetic field B which main-

tains a constant direction but with a magnitude varying linearly with

distance along an axis perpendicular to B . In cartesian coordinates

B = B (x/L) (8)

where L is a scaling distance and where B vanishes and reverses its

direction at the plane x = 0 .An appropriate vector potential is then

A = - (x 2 B/2L) z (9)

from which

H (1/2m) [p 2  p +2 (p + 0x2 2 (10)
x y z

where

o" = q Bo/ 2L
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Clearly p and Pz are constants of the motion. The y-component o

the motion may be completely separated.' and will therefore be omitted here,

leaving

H = p2 /2m + V(x, pz) (II)

where

V = (Pz + x2 )/2m (12)

This may be completely solved in terms of elliptic integrals (as Sonnerup

has done), but quick insight may be gained by merely examining the form 
of

V . As before. V is non-negative, but in this case it tends to infinity

as x -+ ,t: , showing that V represents a potential well and that the

motion is therefore always periodic.

If pz and ( have opposing signs, V vanishes at two points, namely

at

x IP-/ I 1/2

These will be minimum points of the curve of V against x - the only

ones, it turns out - and that curve will resemble the one shown in

Figure (1-a) . If 0Pz > 0 , only one minimum point exi'sts

and it is located at x = 0 , as shown in Figure (1-b) .

In the first case, a mode of motion exists in which particles remain

confined to one side of the neutral plane (i.e. the plane x = 0 , on

which B vanishes). Such particles oscillate back and forth in one of

the "side pockets" of Figure(l-a) in a mode of motion resembling the

well-known guiding center motion (Figure 2-a) . In addition, both forms

of V admit solutions which cross the plane x = 0 . The difference

will be that in the second case (Figure l-b) the z component of the

velocity
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vz (pz + x2 )/m (13)

maintains a constant sign, while in the first case (V as in Fig. 1-a)

v reverses sign at the points at which V = 0 . Thus in the second

case the particle's advance in the z-direction is continuous, as shown

in Figure (2-b) , while in the first case the particle's motion in

that direction includes occasional retrograde motion, as shown in Figure

(2-c) .

GENERALIZATIONS AND ADIABATIC INVARIANTS

A more general form which includes (8) as a special case is

B = B (X) y (14)

Such a field can be handled in much the same fashion, with the vector

potential

A = A(x) z (15)

being derived by indefinite integration from

A(x) = Bo(x) ax (16)

The best-known case of this type is that of a constant field B y ,

in which case A = B 0 x and (12) is replaced by

V = (pz+ q B0x)
2 /2m (17)

Regardless of the sign of pz , V always has the profile of a parabolic

well and the Hamiltonian reduces to that of a harmonic oscillator. This, of

course, gives the well-known guiding center motion of a particle in a

uniform field.
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The guiding center motion and the motion across a neutral plane are both

(6)(7)(8)
periodic. Classical mechanics then shows that the so-called

action integrals derived for such motions

= Px ax (18)

(integration over one period) remain adiabatically invariant in the presence

of slow perturbations. For the constant field B y , the result is the

familiar magnetic moment 
( ), while for the motion in the field (8) a more

complicated invariant has been derived by Sonnerup.

If a curl-free electric field - VO is added, the solution may

still be reducible to a motion in a potential; in particular, if %

depends only on x , the Hamiltonian still has the form (11) and

only the function V appearing there is modified. If 0 = 0 (x, y)

the potential becomes two-dimensional, while if dependence on z is

also allowed, pz is no longer constant and all the advantage of

introducing V- is lost.

An exception to this is a constant electric field E , for which

- = x Ex + yE z Ez (19)

In that case, the motion in y still separates, and if the magnetic

field is constant, the problem may still be reduced to motion in a

one-dimensional potential. To do so one employs a canonical transformation
(10)

to new variables (Pi., Qi) , introduced by Gardner ; if B is given as

A
B 0 y , the generating function of the transformation is

F(P, r) = B 0 P1 x + P2 y + P3 z - P1p3 / q (20)

A few additional steps reduce H to a form similar to that derived for a

constant field, but the only net result is the addition of the guiding

center drift due to E .
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TWO- DIMENSIONAL FIELDS

Consider the general class of fields independent of z and lacking

a z-component

B = x B (x, y) y By(x, y) (21)
- - x y

(B and B must be related by zero-divergence condition). Such fields
x  y (4)

can be expressed in terms of Euler potentials

B V= O(x, y) 9'z (22)

where r is the indefinite integral

L, (x, y) =x + Bl(y) (25)

and where B 1 is adjusted to satisfy

r) /0 y = B x (x, y)

A field line of this field is then characterized by the constancy of

tL (x, y) and of z, and the Hamiltonian is

H = (l1/2m) p 2 + Py2 + V(p, x, y) (24)

where pz is a constant of the motion and

2

[Pz - qo((x, y)} /2m (25)
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The motion thus reduces to a two-dimensional motion in a non-negative

potential in which all equipotentials follow magnetic field lines, with

the third coordinate arbitrary and constant.

magnetic

As an example, conside the X-typeAnull line (or neutral line - a line

along which B vanishes) obtained by adding an extra term to equation (8)

B = (x/L) t- B (y/L) (26)

The appropriate Euler potential will satisfy

q o~(x,y) = U - P 7)

where . = q B./2L . The field lines are a family of hyperbolas
1 1

sharing the same asymptotes (Figure 5) and the Hamiltonian is

H (1/2m) Px2  2 + (P2- 2
x2  2 (28)

All equipotential lines are thus field lines (and vice versa) but unless

Pz is given, one cannot determine which of these lines represent 
high

values of V and which ones represent low values. For any given pz '

there will exist two conjugate hyperbolas on which V vanishes

2 2
Pz = 2 y - Xx

and these represent the bottoms of two valleys, separated by a pass at

the origin. A particle starting from one of the valleys (broken line

in Figure 3) needs a certain minimum of energy to climb out of it and

to cross the pass. However, even when the energy exceeds this minimum,



the particle might fail to cross the pass: whether it succeeds in doing

so depends on the exact initial conditions. The motion may be investigated

(11)
qualitatively and numerically but a complete analytical solution is

not available.

Other two-dimensional fields with some practical interest are those

which can serve as models for the central portion of the earth's

"magnetic tail" ; such fields differ from the one in equation (8) by

small additional terms. For instance

A

B = B (x/L) + B x (3O)

has parabolical field lines and represents one such model, with B 1

accounting for the average northward magnetic flux observed in the

geomagnetic tail, due to the magnetic polarity of the earth's main

field. This field has the interesting property that first order guiding

center drifts in it (curvature and gradient) cancel identically
(1 )

when averaged over a single longitudonal excursion of the particle.

Another model (13 ) contains a string of alternating X-type and
such behavior

0-type null lines and may be represented by

B B B(x/L) + B I sinu y (31)

Both these fields can be handled in the same way as the field of

figure (3), but details are left to the reader.

BOUNDARY FIELDS

Grad (14 ) investigated the transition between a field-free plasma and

a plasma-free uniform magnetic field. The magnetic field in his example

was

B = B(x) (32)
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with B(x) O for any finite x and with

B(c ) - BO = const.

B(- 0 ) - O

The plasma density was assumed to depend only on x , tending to a

constant limit as x - - w and to zero as x-+ m .

The vector potential for (32) can be written as

A = A(x) (33)

with A(x) derived by integration

x

A(x) = B(x') dx' (34)

O n

Because B 0., the sign of B (assumed to be positive) never changes

making A(x) monotonically increasing. The Hamiltonian of the motion in

the (x, y) plane (the z-component of the motion may be separated) is then

H (1/2m) [px2 (py - q A(x) )2] (5)

and has a form similar to that of (11), since py is conserved. The

potential V now has the form

V = (p- q A )2/2m (36)
y

and the qualitative analysis resembles that of (11). If py and qA

have the same algebraic sign, then V increases monotonically with x ,

so that any particle for which this is true will penetrate to a maximal

value of x and then roll back all the way to -oo
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If the signs differ, there will exist for the given value of py an

absolute minimum of V at which V vanishes, and particles of suffici-

ently low energy will be trapped in the vicinity of that minimum. In

conventional terms, orbits extending to x = - 00 correspond to parti-

cles arriving at the boundary of the magnetic field from the field-free

region and being reflected at that boundary, while trappe dorbits repre-

sent guiding center motion inside the region of appreciable magnetic

field.

The Hamiltonian formulation is especially useful in this case

because - through the Liouville equation - it leads directly to the

Vlasov equation for a plasma located in the given magnetic field, and

this has been investigated by various workers ) The method may be

extended to fields having the form

B = B (x) y + B(x) (37)
- y - z -

The vector potential can then be viewed as the sum of vector

potentials derived separately for each component, the derivation in

each case following the one given in equations (33) - (34). Writing

A A y(x) r + Az (x ) 
2  (38)

one can derive the components by integrating the relations

dAy/dx = Bz dA/dx= - By (39)

The Hamiltonian is still that of motion along the x axis with a poten-

tial V , but now

V = [(p - qA y(x) )2 + (p - qA z(x) )2 /2m (40)

and both py and pz are constants of the motion. Again, the transi-

tion to treatment of the Vlasov equation is straightforward: the general
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solution of that equation will be a function of the constants of motion

(py, Pz, E) and must be constructed in a way which 
makes the density of

electric charge and current agree with the postulated fields and 
avoids

negative particle densities.

The important case where B represents a monotonic transition
(16)

between two constant fields has been analyzed by Alpers . Such a

transition may serve as a good model for the magnetopause - the sharp

transition observed between the geomagnetic field and the interplanetary

plasma - and also for "tangential discontinuities" observed by spacecraft

in interplanetay space(17 . In the former case an electric field - V(x)

probably exists at least on one side of the boundary, due to tangential

flow of the plasma there, and this adds one extra term to (40) .

For large values of x , in these examples, the field tends to

constant values and by (39) , in this limit

A (x) - A + x B

Syl zl
(41)

A (x) -- A - x B
z zl yl

A similar limit exists as x--. -o , with index 2 replacing index 1

In both cases, because of the factor x, the contributions of A to V

will be relatively large. Of course, the values of py and pz could be

of comparable magnitude, causing V to have its minimum at some large value

of x and leading to guiding center motion in the vicinity of that x

For most values of p and p , however, when x is large the terms

proportional to it in (41 1 dominate V and cause "potential walls"

to rise parabolically as x -o ± eo , leaving between them a "valley"

with a floor which may be quite irregular. Particles of sufficient

energy will bounce back and forth between such walls, thus crossing and

recrossing the boundary region in a manner somewhat similar to that of

particles near Sonnerup's neutral sheet (note however that here the motion
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is not confined to a single plane). Such particles trapped in

the vicinity of the magnetopause seem to be responsible for the current

density required to maintain it.

Another example of a field having a form for which the motion of a

particle is readily reduced to motion in a potential V is the rotating

field

A
B = B ( sin Ax z cos Ax ) (42)

The details are left to the reader. The motion of charged particles

can also be solved in a somewhat more general field which in addition

to (42) also contains a constant magnetic field in the x direction

and that case, too, reduces to motion in a one-dimensional potential,
but the potential is in velocity space and its derivation is not as

straightforward as in the examples given here. Details may be found in
the work of Lutomirski and Sudan

CONCLUSIONS

The preceding examples show that if the Hamiltonian for a charged

particle in a magnetic field contains one or two cyclic variables, it can
often be cast in a form representing motion in a one-dimensional or a

two-dimensional potential V . The structure of V then often provides
qualitative insight into the range of motions which can exist. If the
motion reduces to a one-dimensional case, the existence of potential

wells suggests periodicity, allowing adiabatic invariants to be deduced.

In two-dimensional motions the derivation of complete solutions may

prove impossible. but qualitative conclusions might still be deduced from
V , as in Strmer's calculation.

An interesting - and unanswered - question is how valid are the

qualitative properties deduced from V when the strict conditions which
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allow it to be introduced (usually some symmetry) are relaxed. In the

one-dimensional case, adiabatic invariants deduced from V are expected

to be approximately preserved even in the presence of perturbations. The

derivation of adiabatic invariants, however, rests on classical pertur-

bation theory and requires the availability of the solution for the

unperturbed motion. In two-dimensional cases - like Stirmer's theory -

such a solution is not available, and it is not clear how the qualitative

theory can be extended to perturbed cases. Observations suggest that

cosmic ray particles in the geomagnetic field conform quite well to

Stgrmer's theory, in spite of an appreciable asymmetry of the field: this

suggests that an extension of that theory might well exist, although

none is known at the present time.
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CAPTIONS TO FIGURES

Figure 1 - Potential wells for the motion of a particle in a magnetic

field B (x/L) o

Figure 2 - Possible modes of motion for a particle in a magnetic field

BO(x/L) A

Figure 3 - Potential contours for the motion of a particle near a

magnetic null lineo
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